]> git.vanrenterghem.biz Git - R/project-wa-schools.git/blob - WA_active_schools.R
ae59595e3d2532f327215e2a91cdc24f0cfc0984
[R/project-wa-schools.git] / WA_active_schools.R
1 library(sf)
2 library(dplyr)
3 library(ggplot2)
4 library(maptiles)
5 library(tidyterra)
6 library(viridis)
7 library(httr2)
9 ## Obtain the shapefile from WA opendata (SLIP)
10 tempdirSHP <- tempdir()
11 tempfileSHP <- tempfile()
12 req <- request("https://sso.slip.wa.gov.au/as/token.oauth2") |>
13     req_headers("Authorization" = "Basic ZGlyZWN0LWRvd25sb2Fk") |>
14     req_body_form(grant_type = "password",
15                   # SLIP username and password stored in
16                   # pass - the standard unix password manager
17                   username = system2("pass", args = "slip.wa.gov.au | grep Username | sed -e 's/Username: //'", stdout = TRUE),
18                   password = system2("pass", args = "slip.wa.gov.au | head -1", stdout = TRUE))
20 tokenResponse <- req_perform(req)
22 slipUrl <-  "https://direct-download.slip.wa.gov.au/datadownload/Education/Current_Active_Schools_Sem_1_2022_Public_DET_020_WA_GDA94_Public_Shapefile.zip"
24 req <- request(slipUrl) |>
25     req_headers( 'Authorization' = paste0('Bearer ',resp_body_json(tokenResponse)$access_token))
27 responseSlip <- req_perform(req)
28 writeBin(resp_body_raw(responseSlip), con = tempfileSHP)
29 unzip(tempfileSHP, exdir = tempdirSHP)
30 shape.df <- st_read(dsn = tempdirSHP)
31 shape.df$latitude <- as.numeric(shape.df$latitude)
32 shape.df$longitude <- as.numeric(shape.df$longitude)
33 shape.df$totalschoo <- as.numeric(shape.df$totalschoo)
34 shape.df$totalsecon <- as.numeric(shape.df$totalsecon)
36 # filter out remote islands
37 shape.df <- filter(shape.df,longitude > 100)
38 # Obtain the contour box of the shape
39 lat <- c(min(shape.df$latitude), max(shape.df$latitude))
40 lon <- c(min(shape.df$longitude), max(shape.df$longitude))
41 # Define Perth metro contours
42 lat.metro <- c(-32.1547, -31.8519)
43 lon.metro <- c(115.7162,116.0733)
44 # Obtain an openstreetmap background image
45 sfg_WA <- st_polygon(list(rbind(c(lon[1],lat[1]),
46                                    c(lon[2],lat[1]),
47                                    c(lon[2],lat[2]),
48                                    c(lon[1],lat[2]),
49                                    c(lon[1],lat[1])
50                                    )))
51 WATiles <- get_tiles(st_transform(st_sfc(sfg_WA, crs = 4326), 3857), provider = "Stadia.Stamen.TonerLite", crop = TRUE, zoom = 6)
53 ggplot() +
54   geom_spatraster_rgb(data = WATiles) +
55   geom_sf(data = shape.df, 
56              aes(color = totalschoo),
57              show.legend = TRUE) +
58   scale_color_viridis(option="viridis",
59                       name = "Number\nof pupils") +
60   theme(legend.position = "right",
61         axis.text = element_blank(),
62         axis.ticks = element_blank()) +
63   labs(title = "Western Australian schools",
64        caption = "Map tiles by Stamen Design, under CC BY 3.0.\nMapdata by OpenStreetMap, under ODbL.
65        School data © Government of WA 2022.\n Dep. of Education & Training.",
66        x="",
67        y="")
70 # Zooming in on Perth metro
71 shape.metro.df <- filter(shape.df, abs(latitude) <= max(abs(lat.metro)),
72                          abs(latitude) >= min(abs(lat.metro)),
73                          abs(longitude) <= max(abs(lon.metro)),
74                          abs(longitude) >= min(abs(lon.metro)))
75 sfg_metro <- st_polygon(list(rbind(c(lon.metro[1],lat.metro[1]),
76                                    c(lon.metro[2],lat.metro[1]),
77                                    c(lon.metro[2],lat.metro[2]),
78                                    c(lon.metro[1],lat.metro[2]),
79                                    c(lon.metro[1],lat.metro[1])
80                                    )))
81 metroTiles <- get_tiles(st_transform(st_sfc(sfg_metro, crs = 4326), 3857), provider = "Stadia.Stamen.TonerLite", crop = TRUE, zoom = 11)
82 # Let's look at secondary school only
83 # 95th percentile of school size
84 secon95th <- quantile(shape.metro.df[,"totalsecon">0]$totalsecon,probs = .95)
85 ggplot() +
86   geom_spatraster_rgb(data = metroTiles) +
87   geom_sf(data = filter(shape.metro.df, totalsecon > 0),
88              aes(color = totalsecon,
89                  size = totalsecon),
90              ) +
91   geom_sf_label(data = filter(shape.metro.df, totalsecon > secon95th), # name top 5% schools
92              aes(x = longitude, 
93                  y = latitude,
94                  label = schoolname),
95             size = 2) +
96   scale_color_viridis(option="viridis",
97                       name = "Number\nof pupils") +
98   guides(size = 'none') + # Do not show legend for size, as color is the main key
99   theme(legend.position = "right",
100         axis.text = element_blank(),
101         axis.ticks = element_blank()) +
102   labs(title = "Western Australian secondary schools",
103        subtitle = "Perth metro area",
104        caption = "Map tiles by Stamen Design, under CC BY 3.0.\nMapdata by OpenStreetMap, under ODbL.
105        School data © Government of WA 2022.\n Dep. of Education & Training.",
106        x="",
107        y="")