devtools::install_github("tidyverse/ggplot2") # needed for geom_sf
library(ggplot2)
library(viridis)
+library(ggthemes)
# Obtain the tax dataset if not available yet
if(!file.exists("data/taxstats2015individual06ataxablestatusstateterritorypostcode.csv"))
# Total income will be incorrect, as the POAs intersect with multiple SA3s
sa3$TotalIncome <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss..`))
sa3$TotalIncomeEarners <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss.no.`))
-sa3$incomeperearningcapita <- sa3$TotalIncome / sa3$TotalIncomeEarners
+sa3$incomeperearningcapita <- (sa3$TotalIncome / sa3$TotalIncomeEarners)/1000
# As SA3s are still to narrow around cities compared to in the country,
# let's simply look at Melbourne
ggplot(dplyr::filter(sa3, data.table::`%like%`(GCC_NAME16, "Melbourne") )) +
geom_sf(aes(fill = incomeperearningcapita, color = incomeperearningcapita)) +
- scale_fill_viridis("incomeperearningcapita") +
- scale_color_viridis("incomeperearningcapita")
+ scale_fill_viridis(name = "") +
+ scale_color_viridis(name = "") +
+ coord_sf(datum = NA) + # Work around https://github.com/tidyverse/ggplot2/issues/2071 to remove gridlines
+ labs(title = "Melbourne \nincome distribution",
+ subtitle = "2014/15, in 1000s AUD",
+ caption = "\nSource: Australian Taxation Office") +
+ theme_economist() +
+ theme(legend.position = "bottom",
+ legend.text = element_text(angle = 45, hjust = 1, size = 8),
+ axis.text = element_blank(),
+ axis.ticks = element_blank())
+