sa3$TotalIncome <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss..`))
sa3$TotalIncomeEarners <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss.no.`))
sa3$incomeperearningcapita <- sa3$TotalIncome / sa3$TotalIncomeEarners
-ggplot(sa3) +
+
+# As SA3s are still to narrow around cities compared to in the country,
+# let's simply look at Melbourne
+
+ggplot(dplyr::filter(sa3, data.table::`%like%`(GCC_NAME16, "Melbourne") )) +
geom_sf(aes(fill = incomeperearningcapita, color = incomeperearningcapita)) +
scale_fill_viridis("incomeperearningcapita") +
scale_color_viridis("incomeperearningcapita")