library(sf)
library(dplyr)
library(ggplot2)
-library(OpenStreetMap)
+library(maptiles)
+library(tidyterra)
library(viridis)
library(httr2)
# filter out remote islands
shape.df <- filter(shape.df,longitude > 100)
# Obtain the contour box of the shape
-
lat <- c(min(shape.df$latitude), max(shape.df$latitude))
lon <- c(min(shape.df$longitude), max(shape.df$longitude))
-
+# Define Perth metro contours
lat.metro <- c(-32.1547, -31.8519)
lon.metro <- c(115.7162,116.0733)
-upperLeft.metro <- c(-31.8519,115.7162)
-lowerRight.metro <- c(-32.1547,116.0733)
-
# Obtain an openstreetmap background image
-map <- openmap(upperLeft = c(lat[2],lon[1]),
- lowerRight = c(lat[1],lon[2]),
- minNumTiles = 6,
- type="https://stamen-tiles.a.ssl.fastly.net/toner-lite/{z}/{x}/{y}.png")
-map.metro <- openmap(upperLeft = upperLeft.metro,
- lowerRight = lowerRight.metro,
- minNumTiles = 6,
- type="https://stamen-tiles.a.ssl.fastly.net/toner-lite/{z}/{x}/{y}.png")
-
-mapLatLon <- openproj(map)
+sfg_WA <- st_polygon(list(rbind(c(lon[1],lat[1]),
+ c(lon[2],lat[1]),
+ c(lon[2],lat[2]),
+ c(lon[1],lat[2]),
+ c(lon[1],lat[1])
+ )))
+WATiles <- get_tiles(st_transform(st_sfc(sfg_WA, crs = 4326), 3857), provider = "Stadia.Stamen.TonerLite", crop = TRUE, zoom = 6)
-OpenStreetMap::autoplot.OpenStreetMap(mapLatLon) +
- geom_point(data = shape.df,
- aes(x = longitude,
- y = latitude,
- color = totalschoo),
+ggplot() +
+ geom_spatraster_rgb(data = WATiles) +
+ geom_sf(data = shape.df,
+ aes(color = totalschoo),
show.legend = TRUE) +
scale_color_viridis(option="viridis",
name = "Number\nof pupils") +
y="")
-# Zooming in on metro
+# Zooming in on Perth metro
shape.metro.df <- filter(shape.df, abs(latitude) <= max(abs(lat.metro)),
abs(latitude) >= min(abs(lat.metro)),
abs(longitude) <= max(abs(lon.metro)),
abs(longitude) >= min(abs(lon.metro)))
-mapLatLon.metro <- openproj(map.metro)
+sfg_metro <- st_polygon(list(rbind(c(lon.metro[1],lat.metro[1]),
+ c(lon.metro[2],lat.metro[1]),
+ c(lon.metro[2],lat.metro[2]),
+ c(lon.metro[1],lat.metro[2]),
+ c(lon.metro[1],lat.metro[1])
+ )))
+metroTiles <- get_tiles(st_transform(st_sfc(sfg_metro, crs = 4326), 3857), provider = "Stadia.Stamen.TonerLite", crop = TRUE, zoom = 11)
# Let's look at secondary school only
# 95th percentile of school size
secon95th <- quantile(shape.metro.df[,"totalsecon">0]$totalsecon,probs = .95)
-OpenStreetMap::autoplot.OpenStreetMap(mapLatLon.metro) +
- geom_point(data = filter(shape.metro.df, totalsecon > 0), # geom_sf is not yet in ggplot2 on CRAN, so sticking to this for now
- aes(x = longitude,
- y = latitude,
- color = totalsecon,
- size = totalsecon)
+ggplot() +
+ geom_spatraster_rgb(data = metroTiles) +
+ geom_sf(data = filter(shape.metro.df, totalsecon > 0),
+ aes(color = totalsecon,
+ size = totalsecon),
) +
- geom_text(data = filter(shape.metro.df, totalsecon > secon95th), # name top 5% schools
+ geom_sf_label(data = filter(shape.metro.df, totalsecon > secon95th), # name top 5% schools
aes(x = longitude,
y = latitude,
label = schoolname),