devtools::install_github("tidyverse/ggplot2") # needed for geom_sf
library(ggplot2)
library(viridis)
+library(ggthemes)
+library(animation) # for saveGIF
# Obtain the tax dataset if not available yet
if(!file.exists("data/taxstats2015individual06ataxablestatusstateterritorypostcode.csv"))
geom_sf(aes(fill = incomeperearningcapita, color = incomeperearningcapita)) +
scale_fill_viridis("incomeperearningcapita") +
scale_color_viridis("incomeperearningcapita")
+
+# Let's try by SA3
+if(!file.exists("data/1270055001_sa3_2016_aust_shape.zip"))
+ download.file(url = "http://www.abs.gov.au/AUSSTATS/subscriber.nsf/log?openagent&1270055001_sa3_2016_aust_shape.zip&1270.0.55.001&Data%20Cubes&43942523105745CBCA257FED0013DB07&0&July%202016&12.07.2016&Latest", destfile = "data/1270055001_sa3_2016_aust_shape.zip")
+
+if(!file.exists("data/SA3_2016_AUST.shp"))
+ unzip(zipfile = "data/1270055001_sa3_2016_aust_shape.zip", exdir = "data/")
+
+sa3 <- st_read(dsn = "data/", layer = "SA3_2016_AUST", stringsAsFactors = FALSE)
+
+# Create a matrix of intersecting postal codes and SA3's
+
+POA_SAs <- st_intersects(x=sa3, y=POA, sparse=FALSE)
+taxstats.POA$`Total.Income.or.Loss..`[is.na(taxstats.POA$`Total.Income.or.Loss..`)] <- 0
+taxstats.POA$`Total.Income.or.Loss.no.`[is.na(taxstats.POA$`Total.Income.or.Loss.no.`)] <- 0
+# Perform matrix multiplication to obtain the income metrix per SA3
+# Total income will be incorrect, as the POAs intersect with multiple SA3s
+sa3$TotalIncome <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss..`))
+sa3$TotalIncomeEarners <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss.no.`))
+sa3$incomeperearningcapita <- (sa3$TotalIncome / sa3$TotalIncomeEarners)/1000
+
+# As SA3s are still to narrow around cities compared to in the country,
+# let's simply look at Melbourne
+
+cities = c("Perth","Melbourne","Sydney","Adelaide","Brisbane")
+
+# Create a plot for each of these cities. This is wrapped in a function
+# for use by saveGIF
+
+plots <- function() {lapply(cities, function(x){
+ plot <- ggplot(dplyr::filter(sa3, data.table::`%like%`(GCC_NAME16, x) )) +
+ geom_sf(aes(fill = incomeperearningcapita, color = incomeperearningcapita)) +
+ scale_fill_viridis(name = "",
+ limits = c(min(sa3$incomeperearningcapita, na.rm = TRUE),max(sa3$incomeperearningcapita, na.rm = TRUE))) +
+ scale_color_viridis(name = "",
+ limits = c(min(sa3$incomeperearningcapita, na.rm = TRUE),max(sa3$incomeperearningcapita, na.rm = TRUE))) +
+ coord_sf(datum = NA) + # Work around https://github.com/tidyverse/ggplot2/issues/2071 to remove gridlines
+ labs(title = paste0(x," \nincome distribution"),
+ subtitle = "2014/15, in 1000s AUD",
+ caption = "\nSource: Australian Taxation Office") +
+ theme_economist() +
+ theme(legend.position = "bottom",
+ legend.text = element_text(angle = 45, hjust = 1, size = 8),
+ axis.text = element_blank(),
+ axis.ticks = element_blank())
+ print(plot)
+})
+}
+
+saveGIF(plots(),movie.name = "AUCitiesIncomeDistribution.gif", interval = 2, loop = 2)