1 ## The Red Rooster line
3 ## Initiated by a radio interview described on https://www.abc.net.au/news/2023-11-25/disadvantaged-students-medicine-university/103141050
7 library(sfext) # Used to quickly calculate aspect ratio of bounding box. Install with pak::pkg_install("elipousson/sfext")
15 ## Obtain boundaries for significant urban areas in Australia
16 ## https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
18 shapeAustralia <- read_sf("~/Downloads/SUA_2021_AUST_GDA94.shp")
20 ## Create bounding boxes around the city shapes
22 bb[["Perth"]] <- st_bbox(st_transform(st_as_sf(shapeAustralia[shapeAustralia$SUA_NAME21 == "Perth",]), 4326))
23 bb[["Sydney"]] <- st_bbox(st_as_sf(shapeAustralia[shapeAustralia$SUA_NAME21 == "Sydney",]))
25 ## Obtain OpenStreetMap data on the location of fast food restaurants across the cities
27 fastfood <- lapply(bb, function(x) {
28 opq(x, timeout = 50) |>
29 add_osm_feature("amenity", "fast_food") |>
30 add_osm_feature("access", "!private") |>
33 ## Map everything using downloaded background tiles
35 bbsfPerth <- st_as_sf(shapeAustralia[shapeAustralia$SUA_NAME21 == "Perth",])
36 TODO - find B/W tile server
37 mapPerth <- get_tiles(x = bbsfPerth, provider = "OpenStreetMap", zoom = 9)
38 dev.new(width = 15, height = 15 * 9/16, unit = "cm")
39 ggplot(fastfood[["Perth"]]$osm_points) +
40 geom_spatraster_rgb(data = mapPerth) +
41 geom_sf(aes(colour = brand),
44 scale_color_manual(values=as.vector(glasbey())) +
45 theme(legend.position="right") +
46 labs(title = "Fastfood in Perth metro",
49 ## Obtain way data from OpenStreetMap in order to construct our own background map
51 majorRoads <- lapply(bb, function(x) {
52 opq(x, timeout = 120) |>
53 add_osm_feature(key = "highway",
54 value = c("motorway", "primary", "secondary")) |>
57 minorRoads <- lapply(bb, function(x) {
58 opq(x, timeout = 120) |>
59 add_osm_feature(key = "highway", value = c("tertiary")) |>
62 boundaries <- lapply(bb, function(x) {
63 opq(x, timeout = 120) |>
64 add_osm_feature(key = "boundary", value = c("administrative")) |>
65 add_osm_feature(key = "admin_level", value = c(2,8,9,10,11)) |>
69 water <- lapply(bb, function(x) {
70 opq(x, timeout = 180) |>
71 add_osm_feature(key = "natural", value = "water") |>
72 add_osm_feature(key = 'name') |>
75 ## Create city outlines, sfc bounding box and separate out ocean area as OSM does not have that polygon
77 outlines <- sapply(names(bb), function(x) {
78 st_union(boundaries[[x]]$osm_multipolygons[which(boundaries[[x]]$osm_multipolygons$admin_level == 9), ])},
79 simplify = FALSE, USE.NAMES = TRUE)
80 bbSfc <- sapply(names(bb), function(x) {
81 a <- st_as_sfc(bb[[x]])
82 a <- st_transform(a, crs = st_crs(outlines[[x]]))
84 simplify = FALSE, USE.NAMES = TRUE)
85 ocean <- sapply(names(bbSfc), function(x) {
86 a <- st_difference(bbSfc[[x]],outlines[[x]])
87 a <- st_transform(a, crs = st_crs(outlines[[x]]))
89 simplify = FALSE, USE.NAMES = TRUE)
91 ## Chop all the osm data to the sfc bounding box, as the queried data runs over its bounding box for many features
93 boundariesChopped <- sapply(names(bbSfc), function(x) {
94 st_intersection(boundaries[[x]]$osm_multipolygons[which(boundaries[[x]]$osm_multipolygons$admin_level == 9), ], bbSfc[[x]])},
95 simplify = FALSE, USE.NAMES = TRUE)
96 minorRoadsChopped <- sapply(names(bbSfc), function(x) {
97 st_intersection(minorRoads[[x]]$osm_lines$geometry, bbSfc[[x]])},
98 simplify = FALSE, USE.NAMES = TRUE)
99 majorRoadsChopped <- sapply(names(bbSfc), function(x) {
100 st_intersection(majorRoads[[x]]$osm_lines$geometry, bbSfc[[x]])},
101 simplify = FALSE, USE.NAMES = TRUE)
102 waterChopped <- sapply(names(bbSfc), function(x) {
103 a <- st_intersection(water[[x]]$osm_multipolygons$geometry, bbSfc[[x]])
104 b <- st_intersection(water[[x]]$osm_polygons$geometry, bbSfc[[x]])
107 simplify = FALSE, USE.NAMES = TRUE)
109 ## Obtain Red Rooster logo
110 logo <- image_read("https://www.redrooster.com.au/favicon.ico")
111 logo <- image_convert(logo[1],"png")
112 image_write(logo, "RedRooster.png")
114 RedRoosterLocations <- sapply(names(bbSfc), function(x) {
115 a <- data.frame(st_coordinates(fastfood[[x]]$osm_points[which(fastfood[[x]]$osm_points$brand == "Red Rooster"), ]))
116 a$image <- paste0(getwd(),"/RedRooster.png")
118 simplify = FALSE, USE.NAMES = TRUE)
121 ## Combine it all in a plot for a city, with the Red Rooster data as points
123 plotCity <- function(x, logoSize = .02) {
125 geom_sf(data = majorRoadsChopped[[x]],
129 geom_sf(data = boundariesChopped[[x]],
135 geom_sf(data = minorRoadsChopped[[x]],
139 geom_sf(data = waterChopped[[x]],
144 geom_image(data = RedRoosterLocations[[x]], aes(x = X, y = Y, image = image), size = logoSize) +
145 geom_sf(data = ocean[[x]], fill = "cadetblue3") +
150 ## Plot the results and name the CBDs
152 dev.new(width = 10 * sfext::sf_bbox_asp(bb$Perth), height = 10, unit = "cm")
153 p <- plotCity("Perth", .015) +
154 geom_sf_text(data = boundaries$Perth$osm_multipolygons[which(boundaries$Perth$osm_multipolygons$name == "Perth"), ], label = "Perth", nudge_y = -0.01)
156 png("plots/Perth_Red_Rooster_locations.png", width = 1000 * sfext::sf_bbox_asp(bb$Perth), height = 1000, res = 135)
159 system("mogrify -trim plots/Perth_Red_Rooster_locations.png")
160 system(paste0("mogrify -resize ", round(1000 * sfext::sf_bbox_asp(bb$Perth), 0), "x1000 plots/Perth_Red_Rooster_locations.png"))
162 dev.new(width = 10 * sfext::sf_bbox_asp(bb$Sydney), height = 10, unit = "cm")
163 plotCity("Sydney") + geom_sf_text(data = boundaries$Sydney$osm_multipolygons[which(boundaries$Sydney$osm_multipolygons$name=="Sydney"),], label = "Sydney")
165 ## Cut a line across the city of Sydney, from Windsor in the north-west to Sydney Airport in the south-east, and a curious trend emerges.
167 Windsor <- st_centroid(boundaries$Sydney$osm_multipolygons[which(boundaries$Sydney$osm_multipolygons$name=="Windsor"),]$geometry)
169 SydneyAirport <- st_centroid(boundaries$Sydney$osm_multipolygons[which(boundaries$Sydney$osm_multipolygons$name=="Mascot"),]$geometry)
171 RedRoosterLine <- st_cast(st_union(Windsor,SydneyAirport) ,"LINESTRING")
173 dev.new(width = 10 * sfext::sf_bbox_asp(bb$Sydney), height = 10, unit = "cm")
174 p <- plotCity("Sydney") +
175 geom_sf(data = RedRoosterLine, color = "#91131B", linetype = "twodash", linewidth = 2) +
176 geom_sf_text(data=Windsor, label = "Windsor", nudge_x = -0.015, nudge_y = -0.015) +
177 geom_sf_text(data=SydneyAirport, label = "Sydney Airport", nudge_y = -0.005)
180 png("plots/Sydney_Red_Rooster_line.png", width = 800 * sfext::sf_bbox_asp(bb$Sydney), height = 800, res = 135)
183 system("mogrify -trim plots/Sydney_Red_Rooster_line.png")
184 system(paste0("mogrify -resize ", round(800 * sfext::sf_bbox_asp(bb$Sydney), 0), "x800 plots/Sydney_Red_Rooster_line.png"))