install.packages("sf") library(sf) install.packages("devtools") devtools::install_github("tidyverse/ggplot2") # needed for geom_sf library(ggplot2) library(viridis) library(ggthemes) library(animation) # for saveGIF # Obtain the tax dataset if not available yet if(!file.exists("data/taxstats2015individual06ataxablestatusstateterritorypostcode.csv")) download.file(url = "http://data.gov.au/dataset/5c99cfed-254d-40a6-af1c-47412b7de6fe/resource/90f7f4eb-2c44-4884-96c0-01060c820cfd/download/taxstats2015individual06ataxablestatusstateterritorypostcode.csv", destfile = "data/taxstats2015individual06ataxablestatusstateterritorypostcode.csv") # http://data.gov.au/dataset/5c99cfed-254d-40a6-af1c-47412b7de6fe/resource/d3189e9d-533a-4893-b6a1-758781083418/download/taxstats2015individual06btaxablestatusstateterritorypostcode.csv # Obtain shapefile with Australian postal codes if not available yet if(!file.exists("data/1270055003_poa_2016_aust_shape.zip")) download.file(url = "http://www.abs.gov.au/ausstats/subscriber.nsf/log?openagent&1270055003_poa_2016_aust_shape.zip&1270.0.55.003&Data%20Cubes&4FB811FA48EECA7ACA25802C001432D0&0&July%202016&13.09.2016&Latest", destfile = "data/1270055003_poa_2016_aust_shape.zip") # Unzip it if not done already if(!file.exists("data/POA_2016_AUST.shp")) unzip(zipfile = "data/1270055003_poa_2016_aust_shape.zip", exdir = "data/") taxstats <- read.csv("data/taxstats2015individual06ataxablestatusstateterritorypostcode.csv", stringsAsFactors = FALSE) taxstats <- dplyr::filter(taxstats, Taxable.status == "Taxable") POA <- st_read(dsn = "data/", layer = "POA_2016_AUST", stringsAsFactors = FALSE) taxstats.POA <- merge(x = taxstats, y = POA, by.x = "Postcode", by.y = "POA_CODE16", all.y = TRUE) taxstats.POA$incomeperearningcapita <- taxstats.POA$`Total.Income.or.Loss..` / taxstats.POA$Total.Income.or.Loss.no. # Postal codes turn out not to be too interesting, as they're way more granular around # big cities - making the high income postal codes invisible on the chart below ggplot(taxstats.POA) + geom_sf(aes(fill = incomeperearningcapita, color = incomeperearningcapita)) + scale_fill_viridis("incomeperearningcapita") + scale_color_viridis("incomeperearningcapita") # Let's try by SA3 if(!file.exists("data/1270055001_sa3_2016_aust_shape.zip")) download.file(url = "http://www.abs.gov.au/AUSSTATS/subscriber.nsf/log?openagent&1270055001_sa3_2016_aust_shape.zip&1270.0.55.001&Data%20Cubes&43942523105745CBCA257FED0013DB07&0&July%202016&12.07.2016&Latest", destfile = "data/1270055001_sa3_2016_aust_shape.zip") if(!file.exists("data/SA3_2016_AUST.shp")) unzip(zipfile = "data/1270055001_sa3_2016_aust_shape.zip", exdir = "data/") sa3 <- st_read(dsn = "data/", layer = "SA3_2016_AUST", stringsAsFactors = FALSE) # Create a matrix of intersecting postal codes and SA3's POA_SAs <- st_intersects(x=sa3, y=POA, sparse=FALSE) taxstats.POA$`Total.Income.or.Loss..`[is.na(taxstats.POA$`Total.Income.or.Loss..`)] <- 0 taxstats.POA$`Total.Income.or.Loss.no.`[is.na(taxstats.POA$`Total.Income.or.Loss.no.`)] <- 0 # Perform matrix multiplication to obtain the income metrics per SA3 # Total income will be incorrect, as the POAs intersect with multiple SA3s sa3$TotalIncome <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss..`)) sa3$TotalIncomeEarners <- as.vector(POA_SAs %*% as.matrix(taxstats.POA$`Total.Income.or.Loss.no.`)) sa3$incomeperearningcapita <- (sa3$TotalIncome / sa3$TotalIncomeEarners)/1000 # As SA3s are still to narrow around cities compared to in the country, # let's simply look at Melbourne cities = c("Perth","Melbourne","Sydney","Adelaide","Brisbane") # Create a plot for each of these cities. This is wrapped in a function # for use by saveGIF plots <- function() {lapply(cities, function(x){ plot <- ggplot(dplyr::filter(sa3, data.table::`%like%`(GCC_NAME16, x) )) + geom_sf(aes(fill = incomeperearningcapita, color = incomeperearningcapita)) + scale_fill_viridis(name = "", limits = c(min(sa3$incomeperearningcapita, na.rm = TRUE),max(sa3$incomeperearningcapita, na.rm = TRUE))) + scale_color_viridis(name = "", limits = c(min(sa3$incomeperearningcapita, na.rm = TRUE),max(sa3$incomeperearningcapita, na.rm = TRUE))) + coord_sf(datum = NA) + # Work around https://github.com/tidyverse/ggplot2/issues/2071 to remove gridlines labs(title = paste0(x," \nincome distribution"), subtitle = "2014/15, in 1000s AUD", caption = "\nSource: Australian Taxation Office") + theme_economist() + theme(legend.position = "bottom", legend.text = element_text(angle = 45, hjust = 1, size = 8), axis.text = element_blank(), axis.ticks = element_blank()) print(plot) }) } saveGIF(plots(),movie.name = "AUCitiesIncomeDistribution.gif", interval = 2, loop = 2)